Bio-Inspired Sparse Representation of Speech and Audio Using Psychoacoustic Adaptive Matching Pursuit

Al. Petrovsky, V. Herasimovich, A. Petrovsky

speaker: Vadzim Herasimovich

Department of Computer Engineering, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus

1. Introduction

Ideas of the Research:

- Use sparse signal representation based on the matching pursuit (MP);
- Wavelet packet (WP) based dictionary;
- Dictionary adaptation using human auditory system properties;
- Psychoacoustically motivated parameters selection;

Application of the Research:

- Scalable audio/speech coding algorithm development;
- Single transform domain regardless of the nature of the input signal;
- High quality with low bitrates;
- Universality for all known types of audio content;
- Real-time processing.

2. MP using WP Dictionary

Common MP¹ Procedure:

WP Based Dictionary of Time-Frequency Functions:

where l - WP tree level number, n - WP tree node number, k - coefficient index

¹ S. Mallat, Z. Zang, "Matching Pursuits with Time-Frequency Dictionaries", IEEE Transactions on signal processing, vol. 41, pp. 3397-3415 (1993 December).

3. Adaptive WP analysis

WP Decomposition (WPD) Tree Growth Algorithm:

Adaptation Cost Functions:

Wavelet Time Entropy
$$WTE_{E_i} = -\sum_{\forall (l,n) \in E_i} \sum_k \frac{|X_{l,n,k}|}{\sum_{\forall (l,n) \in E_i} |X_{l,n,k}|} \ln\left(\frac{|X_{l,n,k}|}{\sum_{\forall (l,n) \in E_i} |X_{l,n,k}|}\right)$$
Perceptual Entropy $PE_{l,n} = \sum_{k=1}^{K_{l,n}-1} \log_2(2[nint(|X_{l,n,k}|/\Delta_{l,n})]+1)$

4. MP procedure with Optimized Dictionary

Choosing and selecting most relevant coefficients, which has largest excitation weight.

5. Excitation Scalogram

³ A. Petrovsky, D. Krahe, A.A. Petrovsky, "Real-Time Wavelet Packet-based Low Bit Rate Audio Coding on a Dynamic Reconfigurable System", presented at the AES 114th Convention, Amsterdam, The Netherlands, 2003 March 22-25.

⁴ Al. Petrovsky, E. Azarov, A., Petrovsky, "Hybrid signal decomposition based on instantaneous harmonic parameters and perceptually motivated wavelet packets for scalable audio coding", Elsiver, Signal Processing, Special Issue "Fourier Related Transforms for Non-Stationary Signals", vol. 91, pp. 1489-1504 (2011, June).

6. Time-Frequency (T-F) Plan Adaptation

7. T-F Plan Adaptation

frequency

8. Speech and Audio MP Coding Scheme

Encoder Structure:

Decoder Structure:

9. Parameters Quantization & Coding

Parameter Quantization & Coding:

WP Tree Coding:

$$qL_{l,n,m} = 2 \left| nint \left(\left| \frac{X_{l,n,m}^*}{\Delta_{l,n}} \right| \right) + 1 \right|$$

• $qL_{l,n,m}$ encoded using Huffman algorithm.

•
$$B_{l,m} = (b_{m,1}, b_{m,2}, b_{m,3}, \dots, b_{m,w_k}), b_{m,j} \in \{0,1\}, j = \overline{1, w_m}.$$

#	Previous structure E_{i-1}	Code	New structure E_i
1	(l,n) $(l+1,2n)$ $(l+1,2n)$ $(l+1,2n)$	00 no changes	(<i>l</i> , <i>n</i>) (<i>l</i> +1,2 <i>n</i>) (<i>l</i> +1,2 <i>n</i>)
2	(l,n) (l,n) $(l+1,2n)$ $(l+1,2n)$	01 delete	(l,n) •
3	(l,n) •	10 grow	(<i>l</i> , <i>n</i>) (<i>l</i> +1,2 <i>n</i>) (<i>l</i> +1,2 <i>n</i>)
4	0000	11	

10. An Objective Assessment of the Sound Quality

For the objective quality assessment *PEMO-Q*⁵ model was used.

Impairment description	ODG
Imperceptible	0.0
Perceptible, but not annoying	-1.0
Slightly annoying	-2.0
Annoying	-3.0
Very annoying	-4.0

Test sequence: mono, 44.1 kHz sampling rate, 16-bit resolution

Nº	Test item	Description
1	es01	Vocal (Suzan Vega)
2	es02	German speech
3	es03	English speech
4	sc01	Trumpet solo and orchestra
5	sc02	Orchestra piece
6	sc03	Contemporary pop music
7	si01	Harpsichord
8	si02	Castanets
9	si03	Pitch pipe
10	sm01	Bagpipes
12	sm02	Plucked strings

⁵ R. Huber, B. Kollmeier, "PEMO-Q – A New Method for Objective Audio Quality Assessment Using a Model of Auditory Perception", IEEE Transactions on audio, speech, and language processing, vol. 14, pp. 1902-1911 (2006 November).

11. Overall quality comparison

ODG improvement =

- = MP coding scheme with T-F adaptation -
- MP coding scheme

12. MP Coding Scheme Results

13. Conclusions & Future Research

Conclusion:

- Bio-inspired sparse representation model of speech and audio signals has been proposed;
- Time-frequency plan adaptation and its impact to the signal modeling was shown;
- MP audio/speech encoding algorithm as an application of the proposed model was described.

Future Research:

- Optimization of the MP procedure to further improve of the model;
- Encoding algorithm coding and quantization scheme improvement;
- MP audio/speech coder implementation as a field programmable system-on-chip (FPSoC).

Acknowledgements

Thank you for your attention!